APPROXIMATE SOLUTION TO THE PROBLEM OF
HEATING BULKY BODIES AT A VARIABLE WATER
EQUIVALENT OF THE GASES

M. K. Kleiner UDC 536.24

An approximate solution is obtained to the problem of heat conduction during the heating of
bulky bodies in a flow bed with a linearly variable water equivalent of the gases.
For a linearly variable water equivalent of the gases
» W=yt a,z'
without heat sources in the gaseous phase, the problem is formulated as follows [1]:
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The upper sign applies to parallel ﬂovs}, the lower sign applies to counterflow, and the z-axis is positive
in the direction of the gas flow.

A solution to such a problem was obtained in [1] in the form of a series by the method of the integral
heat balance [2]. The convergence of this series in [1] has been proved for the case my = 0. According
to numerical calculations, with my > 0 the series in [1] either converges slowly or diverges altogether.
For this reason, the problem (1)-(4) will be solved here by a somewhat different method.

Following the procedure based on the integral heat balance, we multiply each term in (1) by (2v

+2)p%? *1 and then integrate over the entire body thickness. A simultaneous solution of the resulting
equation and the boundary condition (2) yields
+ %D _ 9y 1 9)BiltuZ)— (DN, (5)
dz
. 1
by =t(1, Z), Ly (2) = (2v + 2) [ o™ E(p, Z)dp. (5a)
. 9 -

in place of (1) and (2).
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TABLE 1, Effect of Exponent n on the Value of y

Plate | Cylinder | Sphere
n

Bi | | l

1,5 20| 2,5 1,5 | 2,0 ) 2,5 1,5 2.0 | 2,5
1 | f | )

9,5 0,834/0,86 |0,875| 0,875 ] 0,89 0,90 0,90 ; 0,91 | 0,918
0,75 0,77 {0,80 0,825, 0,825 0,834 0,858 | 0,858 . 0,87 ; 0,8
1,0 0,715(0,75 {0,778| 0,778 0,80 0,820 | 0,820 i 0,835 | 0,846
1,5 0,625 0,667 0,70 0,70 0,728 0,75 0,75 0,77 0,785
2,56 0,50 10,545/0,585| O 085 0,615 0,643 t 0,643 ; 0,667 | 0,688
3,0 0,455|0,50 {0,538| 0,538 0,571 0,60 ] 0,60 | 0,625 | 0,648

We now express tg in terms of {4y, with the temperature distribution approximated by an n-th degree
parabola:

t =t — A (1 — "), AL, =t—1. (6)
From (6) and (5a) we have
nAt
—f o m (7)
fm=1s v +24n
. Inserting (6) into (2), we obtain
nAt, = Bi ({g— {,)- (8)

From (7) and (8) we determine tg:

_ Bitgh (v + 2+ n)in ©
ST v+t 24nbBi
which yields
v 4-24-n
—f = to—t 10)
th2v2nBl(G m) (

From (10) we then obtain the criterial number which defines the uniformity of the temperature field
¥ (according to G. M. Kondrat'ev's thesis [3]):
p o fo=h | ZviZdn (11)
f—tm  2v--24n+Bi
With (5) and (11) we replace (1)-(3) by

L diy

v 5~ 2) Bip (f— ¢ (12)
== = (2v 4 2) Biy ({g— tm)s
( : Moy g7 ) U6 _ p.— 1) — Bip (fo— by) — Binllg—f ). (13)
v -2 .
To Egs. (12) and (13) must be added the initial conditions at Z = 0 with (4) taken into consideration:

dtp |

[n(0) =th, =+
" dZ mo

(2v + 2) Bi(te— %), (14)

In this way, we have obtained a system of ordinary differential equations which is analogous to the
system obtained earlier in [4] for the heating of thin bodies under the same conditions.

The idea of approximately describing the heating of bulky bodies in terms of known relations for the
heating of thin bodies was first proposed by V. I. Kitaev [5], who introduced the concept of the gross heat
transfer coefficient

a, = o, P ¢/(¢ -+ Bi),

with factor ¢ depending on the body shape. He determined the value of ¢ by comparing the lengths of time
necessary to heat thin and bulky bodies in a parallel-flow and in a counterflow system, with the water equiv-~
alents of the gases and of the heated materials remaining in a constant ratio.

This method was developed further in [6-8]. The value of y was obtained in [6] with the temperature
distribution in the body assumed parabolic, and in [7] on the basis of known temperature distribution
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Fig. 1. Calculation of a plate heating in a
counterflow system, 3 = 0,25, Bi =1, Bi;
=0.02, n = 2: temperature of the gases (1),
temperature of the surface (2), mean-over-
the-mass temperature (3), mean-along-the-
axis temperature (4), qR/A (5), suggested
adjustment of the respective values for the
initial heating period Z < 0.3; solid lines
represent the formulas in [1], black dots
represent formulas (15)-(16), blank dots
represent formulas (20)-(21).
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functions in the regular mode. In [8] the p-~number was
treated according to G. M. Kondrat'ev [3] and was de~
termined either on the basis of solutions to the equation
of heat conduction or approximately on the basis of
physical considerations.

No values of n for our problem are available in
the literature, but one may use the data in [9], where
the values of n are given for the heating of bodies at a
constant water equivalent of the gases. It has been es-
tablished in [10, 11] that such values of n satisfy not
only the equality of temperature gradients in the exact
and in the approximate solution, but also describe well
the temperature distribution across a body section in
the cases which have been analyzed.

It is to be noted that at medium values of the Biot
number the number is not too sensitive to errors in
the exponent n, especially in the case of a cylinder and
a sphere (Table 1},

Assuming that ¢ = const. within a particular time
interval and taking into account (14), we obtain the so-
lution to system (12)-(13) in the following form:
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When my; = 0, (15) and (16) simplify considerably:

tm (Z) —ta .
—‘“Ll--—ﬁlﬂ Fr( b by 1e-by by T uy), wy = (2v +2) BivZ, (18)
th—1ts ‘ _
t(2)— ¢ — ;
_G_(!;_)—,-_g;_(.: — th(Z) tG.C _ 1+ [?z 1F1(2 - bz; 2+ by b2; T ouy). (19)
Im—1G,c o —1G.c 14+ b, = b,

A comparison of (15) and (16) with the test data in [12] shows that, when my > 1, the consideration of
heat losses in the working chamber (Bi > 0) complicates the design formulas appreciably.

An analysis will also show that the heat losses affect the maximum calculated temperature of the
gases tq,¢ (with Bij —~ 0, tgc— tOG) as well as the function describing the dynamics of body heating (right-
hand sides of (15) and (16)).

The expressions for tg o include the sum (8 + Biy) and, therefore, at small values of 8 in many
practical situations Biy has an appreciable effect on tG,e and ty,(Z). On the right-hand sides of (15) and
(16) there appears the sum (Biy + Bi;)/B8 = (b; + by) where Bi; can vary often be disregarded in comparison
with Biy (or unity). :

Then considering that by = 0 on the right-hand sides of (15) and (16), we have

tm(Z)—lg,c _ (1 + myyB) Fy (1; 1+ by F b)) + [1— (1 & mo,85)

tm—fG,c
—b, ) .
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(131
u:__{G—tG,c
tn— G ¢
If, in addition, mg = 0, then
I =lo.e _ k(15 1405 7 i), (22)
tm—tG’c
M,c = "21‘— 1F1(1§ 2 4- by Fouy) (23)

' ‘f-lr{n_tc,'c 146,
Values of {Fi(a, b, x) are given in [1,12].*

If tg(Z) and ty(Z) are known, then tg(Z) is determined from (9), while t(0, Z) = t5(Z) and Aty, are
calculated by the formulas

9+ 2 Bip

tg ==ty —

(ts—tm)y Al = (ts— tm)- (24)

As is well known {13], function ;Fi{@, b, x) converges for every Ix| <« and b = 0, -1, —2, ,.,
Therefore, Egs. (15) and (16) represent the sought solutions when (by +by) # 1, 2, 8, ... Expressions
(18)-(23), on the other hand, are valid for all values of the parameters.

The graph in Fig. 1, which has been copies from [1], shows also results of calculations based on
(15)~(16) and (20)~(21) with (9) and (24) taken into account. The initial conditions for caleulations accord-
ing to the formulas derived here have also been taken from [1] for Z = 1 (in order to satisfy the condition
my; > 0 when the series in [1] is divergent). Calculations have shown that all temperature values based on
the method in [1] agree with those based on (15) and (16) within 2-5°K; formulas (20)-(21) yield often an
insignificant error and are entirely suitable for engineering applications (Fig. 1).

We note that the error of these approximate solutions is due mainly to the inaccuracy of n, and dur-
ing the irregular heating period also due to the imprecise maintenance of the initial temperature distribu-
tion,

*Other sources where {Fi(a, b, x) can be found are listed in [13].
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An analysis has shown [14] that under actual conditions withn = 2, § = 0, mg = 0.5-1.667, and Bi
= 10 the error in determining ty, does not exceed 5%. A more refined def1n1t1on of the value of n would
undoubtedly improve the accuracy of calculations.

A. S. Kadinova [15] compared the values of y for plates on the basis of test data in the regular
mode [3] with the data obtained by B. I. Kitaev [5] for n = 2, and found that both methods yield almost the
same results up to Bi =

These solutions have been obtained on the assumption that @ = const. In the general case, however,
o may be a function of Wg(z) (more precisely, a function of the Reynolds number) as well as of the ambient
and the body temperature.

Taking the relation o (z) into account does not affect the linearity of the system, but it complicates
considerably the coefficients in the second-order differential equation with respect to tyy, (or tg) obtained
from (12)-(13), namely the dependence of these coefficients on Z. Taking into account the temperature
(tg and tg)-dependence, on the other hand, renders the system of equations nonlinear. In both cases it
becomes more difficult to solve Egs. (12)-(13).

At the same time, the assumption of a constant heat transfer coefficient is not the major drawback in
applying the solutions alsotothe caseofavariable heat transfer coefficient, if the calculations are made
piecewise only — with the average of the extreme o values used in each interval,

If the variation of @ with temperature is negligible, then it becomes easy to determine o at the be-
ginning and at the end of a computation interval from known values of wg. If o depends on tg and tg, how-
ever, then the method of successive approximations must be applied here as follows., With known values
of wG, tg, and tg one determines a at the beginning of a computation interval., In order to determine the
end values of a{ag), one first assumes values for tg and tg, then calculates a e, and finds the average
value of @ (&), whereupon the end values to tg and tg are found according to the formulas derived here. If
these values do not coincide with those assumed earlier, one assumes new values for t and tg and repeats
the process until an agreement within the prescribed accuracy is obtained.

A practical application of this method to calculations according to our formulas as well as according
to [1,4, 12] has shown that, as a rule, one or two successive approximations suffice.

According to calculations pertaining to radiative heating of bodies at a constant or at a variable am-
bient temperature [16-19], the solution to the linearized problem with a strong temperature-dependence
of the heat transfer coefficient will yield resulis almost identical to those of an exact solution, if the entire
heating range is broken down into three or more intervals and computations within each of them follow the
described procedure.

NOTATION
t is the instantaneous temperature of the body;
tg is the instantaneous temperature of the gases;
is the radial coordinate of a point in the body;
zZ is the distance from the beginning of the heat transfer zone (entrance in the case of
parallel flow, exit in the case of counterflow) along the gas stream;
p=1/R;
Bi; = KRU/Af;

v={(2v + 2G/¥fR;

are the radius of cylinder or sphere, or half the plate thickness;

is the coefficient of heat losses in the operating volume;

is the heating surface of bodies distributed over a unit furnace length;
is the furnace efficiency;

is the specific heat of heated bodies;

is the heat transfer coefficient;

is the thermal diffusivity;

is the thermal conductivity;

is the specific weight of heated bodies;

is the form factor, according to [7], equal to —0.5, 0, and 0.5 respectively for a
plate, a cylinder, and a sphere;

is the ambient temperature;

TR yR QoA
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is the temperature of combustion products entering the furnace through sideburners;
are the surface temperature and center temperature of heated bodies;
b, x) is the degenerated hypergcometric function [13];
is the equivalent perimeter of furnace cross scction;
is the thermal flux.
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